
CEWES MSRC/PET TR/99-26

Reading Sequential Unformatted CRAY C90 Files
on an SGI Origin

by

James B. White, III

05h00299

Work funded by the DoD High Performance Computing
Modernization Program CEWES
Major Shared Resource Center through

Programming Environment andTraining (PET)

Supported by Contract Number: DAHC94-96-C0002
Nichols Research Corporation

Views, opinions and/or findings contained in this report are those of the author(s) and should not be con-
strued as an official Department of Defense Position, policy, or decision unless so designated by other
official documentation.

Reading Sequential Unformatted CRAY C90 Files on an SGI Origin

James B. White III

May 3, 1999

1 Introduction

The CRAY C90 and SGI Origin have di�erent formats for the binary representation of Fortran data types,

and they have di�erent layouts for binary data in �les. Therefore, a Fortran program compiled on an Origin

cannot read a sequential unformatted �le generated on a C90 without translating from the C90 �le structure

and data-type format. This document describes how to perform the required translation assuming only an

Origin system is available.

The issues surrounding the translation of C90 sequential unformatted �les fall into three categories: the

assign command, the default conversion, and the cry2mips Fortran library function. A example module

and test programs using cry2mips appear in Section 5.

2 The assign Command

The assign command modi�es the attributes assigned to a �le, Fortran I/O unit, �le type, or any �le whose

name matches a speci�ed pattern. The modi�ed attributes cause the Fortran I/O intrinsics, read and write,

to treat the speci�ed �les di�erently.

Programs compiled with the MIPSpro Fortran 90 compiler (f90) automatically change their I/O behavior

at runtime based on the active assign modi�cations. Programs compiled with the MIPSpro F77 compiler,

however, will only respond correctly to assign modi�cations if they are compiled with the \-craylibs"

option.

The assign command saves information on modi�ed attributes in a single �le for each user. On the C90,

the location of this �le is set by default to be \$TMPDIR/.assign". On the Origin, however, the location

of this �le must be set by the user through the FILENV environment variable. The following examples

cause assign attributes to reside in the �le \.assign" within the user's home directory, for ksh and csh,

respectively.

export FILENV=$HOME/.assign

setenv FILENV $HOME/.assign

With FILENV set, the assign command can specify that a particular �le or Fortran unit is in the C90

format. Full speci�cation of a C90 �le or unit requires two options to assign. The �rst option, \-F cos",

indicates the \COS blocked structure", the default �le structured used by sequential unformatted �les on

the C90. The second option, \-N cray", indicates that data are in the Cray Research format, not the IEEE

Standard format. The following example sets the appropriate options for a given �le.

assign -F cos -N cray �lename

Once this assign statement is executed, any Cray �le with the speci�ed name can be read by a Fortran

program executed on the same Origin by that user. This also means Origin �les with the speci�ed name

cannot be read until the assign modi�cations are removed (using \assign -R"). The assign command sets

runtime options for the Fortran I/O library, so a program does not need to be modi�ed or recompiled to use

the information provided by assign.

1

3 Default Conversion

Conversion of character and integer variables between Cray �les and Origin programs is straightforward

and automatic with \assign -F cos". Both 32-bit and 64-bit integer variables on the Origin are written

as 64-bit values in a Cray �le. Similarly, integer values in a Cray �le, which are always 64-bit, can be read

into 32-bit or 64-bit variables. Of course, reading a 64-bit value into a 32-bit variable gives an incorrect

result if the value is too large (positive or negative) to �t in 32 bits.

The \-N cray" argument to the assign command speci�es that Fortran reads and writes should trans-

late between the default size and format of Fortran oating-point types for the C90 and Origin. Floating-point

values on the Origin are stored in IEEE format, while oating-point values on the C90 are stored in a unique

Cray format. Under the \-N cray" translation, 32-bit oating-point variables are written as 64-bit Cray

values, and 64-bit variables are written as 128-bit \double precision" Cray values.

The automatic promotions for writing to a Cray �le mirror automatic demotions forced on reading from

a Cray �le. A read of a 64-bit Cray oating-point value must use a 32-bit variable, not a 64-bit variable.

A read of a 128-bit Cray value can use a 32-bit or 64-bit variable, but not a 128-bit real*16 variable.

Therefore, the automatic numeric conversion by assign forces a loss of precision that cannot be avoided

using only read statements. This loss of precision is likely to be unacceptable for many applictions. Values

and variables of the type complex have similar unacceptable constraints on reading and writing.

4 The cry2mips Fortran Library Function

As of this writing, the author knows of no way to read a 64-bit Cray value directly into a 64-bit IEEE

variable. The Fortran library function cry2mips provides an indirect way of doing this, however. The �rst

step is to read the 64-bit Cray oating-point value into a 64-bit integer. The cry2mips function can then

convert the Cray value stored in the integer to a 64-bit IEEE value stored in an appropriate real variable.

Using two 64-bit integers, cry2mips can make the equivalent complex conversion. Using an array of

64-bit integers, cry2mips can convert arrays of variables. The following code fragments illustrate typical

conversions. For details on the arguments to cry2mips, see \man cry2mips". A reverse translation function,

mips2cry, is also available.

One 64-bit real value:

integer status

integer, parameter :: real_type = 3

integer, parameter :: real_size = 64

integer(8) ix

real(8) x

open(unit=33, file="cray.dat", form="unformatted")

read(33) ix

status = cry2mips(real_type, 1, ix, 0, x, 1,

$ real_size, real_size)

if (status .ne. 0) stop "CRY2MIPS ERROR"

An array of 64-bit real values:

integer status

integer, parameter :: real_type = 3

integer, parameter :: real_size = 64

integer, parameter :: n = 1000

integer(8) ix(n)

real(8) x(n)

2

open(unit=33, file="cray.dat", form="unformatted")

read(33) ix(:)

status = cry2mips(real_type, n, ix(1), 0, x(1), 1,

$ real_size, real_size)

if (status .ne. 0) stop "CRY2MIPS ERROR"

One 128-bit complex value:

integer status

integer, parameter :: complex_type = 4

integer, parameter :: complex_size = 128

integer(8) iz(2)

complex(8) z

open(unit=33, file="cray.dat", form="unformatted")

read(33) iz(:)

status = cry2mips(complex_type, 1, iz(1), 0, z, 1,

$ complex_size, complex_size)

if (status .ne. 0) stop "CRY2MIPS ERROR"

An array of 128-bit complex values:

integer status

integer, parameter :: complex_type = 4

integer, parameter :: complex_size = 128

integer, parameter :: n = 1000

integer(8) iz(2,n)

complex(8) z(n)

open(unit=33, file="cray.dat", form="unformatted")

read(33) iz(:,:)

status = cry2mips(complex_type, n, iz(1,1), 0, z(1), 1,

$ complex_size, complex_size)

if (status .ne. 0) stop "CRY2MIPS ERROR"

5 Example

A program for generating a test �le on a C90 appears in Section 5.1. It generates the �le \cray.dat", which

contains characters, reals, complexs, and an integer.

Section 5.2 shows a module, cray_binary, that provides subroutines for reading real and complex

variables and arrays. The program in Section 5.3 read_cray_binary, uses this module to read the �le

\cray.dat" when it has been moved to an Origin.

Assuming FILENV is set, the following assign command makes \cray.dat" readable by read cray binary.

assign -F cos -N cray cray.dat

The output of read_cray_binary should be similar to the following.

Cray Data:

A = 3.1415926535897967

C = (3.1415926535897967,3.1415926535897967)

N = 10

X = 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.

Z = (1.,-1.), (2.,-2.), (3.,-3.), (4.,-4.), (5.,-5.),

(8.,-8.), (9.,-9.), (10.,-10.)

3

5.1 Program write cray binary

The following Fortran program, write cray binary, can run on a CRAY C90. It generates an unformatted

�le called \cray.dat".

program write_cray_binary

implicit none

integer, parameter :: n = 10

character(len=10) title

integer i

real a, x(n)

complex c, z(n)

title = "Cray Data:"

a = acos(-1.0)

c = cmplx(a,a)

do i = 1, n

x(i) = real(i)

z(i) = cmplx(i,-i)

end do

open(unit=33, file="cray.dat", form="unformatted")

write(33) title

write(33) a

write(33) c

write(33) n

write(33) x(:)

write(33) z(:)

close(33)

end

5.2 Module cray binary

The following Fortran module, cray binary, is useful for reading real and complex numbers from a Cray

�le on an Origin.

module cray_binary

implicit none

private

public :: read_cray

interface read_cray

module procedure read_real, read_real_array,

$ read_complex, read_complex_array

end interface

integer, parameter :: real_type = 3

4

integer, parameter :: complex_type = 4

integer, parameter :: real_size = 64

integer, parameter :: complex_size = 128

contains

subroutine read_real(unit, value)

integer, intent(in) :: unit

real(8), intent(out) :: value

integer :: status, cry2mips

integer(8) :: temp

read(unit) temp

status = cry2mips(real_type, 1, temp, 0, value, 1,

$ real_size, real_size)

if (status .ne. 0) then

print *, "CRY2MIPS FAILED WITH STATUS", status

stop "IN READ_REAL (READ_CRAY)"

end if

end subroutine

subroutine read_real_array(unit, value)

integer, intent(in) :: unit

real(8), intent(out) :: value(:)

integer :: n, status, cry2mips

integer(8), allocatable :: temp(:)

n = size(value, 1)

allocate(temp(n))

read(unit) temp(:)

status = cry2mips(real_type, n, temp(1), 0, value(1), 1,

$ real_size, real_size)

if (status .ne. 0) then

print *, "CRY2MIPS FAILED WITH STATUS", status

stop "IN READ_REAL (READ_CRAY)"

end if

deallocate(temp)

end subroutine

subroutine read_complex(unit, value)

integer, intent(in) :: unit

5

complex(8), intent(out) :: value

integer :: status, cry2mips

integer(8) :: temp(2)

read(unit) temp(:)

status = cry2mips(complex_type, 1, temp(1), 0, value, 1,

$ complex_size, complex_size)

if (status .ne. 0) then

print *, "CRY2MIPS FAILED WITH STATUS", status

stop "IN READ_COMPLEX (READ_CRAY)"

end if

end subroutine

subroutine read_complex_array(unit, value)

integer, intent(in) :: unit

complex(8), intent(out) :: value(:)

integer :: n, status, cry2mips

integer(8), allocatable :: temp(:,:)

n = size(value, 1)

allocate(temp(2,n))

read(unit) temp(:,:)

status = cry2mips(complex_type, n, temp(1,1), 0, value(1), 1,

$ complex_size, complex_size)

if (status .ne. 0) then

print *, "CRY2MIPS FAILED WITH STATUS", status

stop "IN READ_COMPLEX (READ_CRAY)"

end if

deallocate(temp)

end subroutine

end module

5.3 Program read cray binary

The following Fortran program, read cray binary, reads and prints data from \cray.dat". It uses the

cray binary module from Section 5.2 and requires the appropriate assign command before execution.

program read_cray_binary

use cray_binary

implicit none

6

integer n, i

character(len=10) title

real(8) a

real(8), allocatable :: x(:)

complex(8) c

complex(8), allocatable :: z(:)

open(unit=33, file="cray.dat", form="unformatted")

read(33) title

print *, title

call read_cray(33, a)

print *, "A =", a

call read_cray(33, c)

print *, "C =", c

read(33) n

print *, "N =", n

allocate(x(n), z(n))

call read_cray(33, x)

print *, "X =", x

call read_cray(33, z)

print *, "Z =", z

close(33)

end program

References

All material in this document not derived from experiments by the author comes from information supplied

in the man pages for assign, f90, f77, and cry2mips.

7

